
J. Differential Equations 253 (2012) 1191–1205
Contents lists available at SciVerse ScienceDirect

Journal of Differential Equations

www.elsevier.com/locate/jde

Unstable gap solitons in inhomogeneous nonlinear
Schrödinger equations

R. Marangell c, H. Susanto b,∗, C.K.R.T. Jones a

a Department of Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
b School of Mathematical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
c Department of Mathematics and Statistics, University of Sydney, Sydney, NSW 2006, Australia

a r t i c l e i n f o a b s t r a c t

Article history:
Received 13 January 2012
Revised 6 April 2012
Available online 1 May 2012

A periodically inhomogeneous Schrödinger equation is considered.
The inhomogeneity is reflected through a non-uniform coefficient
of the linear and nonlinear term in the equation. Due to the
periodic inhomogeneity of the linear term, the system may admit
spectral bands. When the oscillation frequency of a localized
solution resides in one of the finite band gaps, the solution is a
gap soliton, characterized by the presence of infinitely many zeros
in the spatial profile of the soliton. Recently, how to construct
such gap solitons through a composite phase portrait is shown.
By exploiting the phase-space method and combining it with
the application of a topological argument, it is shown that the
instability of a gap soliton can be described by the phase portrait
of the solution. Surface gap solitons at the interface between a
periodic inhomogeneous and a homogeneous medium are also
discussed. Numerical calculations are presented accompanying the
analytical results.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

A homogeneous nonlinear system may admit a localized solution with a natural frequency residing
in the first (semi-infinite) band-gap of the corresponding linear system. When there is a periodic non-
uniformity in the linear system, additional finite band-gaps will be formed and the nonlinear system
will admit a novel type of solitons known as the gap solitons [3]. One main characteristic of a gap
soliton is the infinitely many number of zeros in the profile of the solution, inheriting a characteristic
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of Bloch waves. Gap solitons are intensively studied among others in nonlinear optics [2] and Bose–
Einstein condensates [19]. Several reports on the experimental observation of gap solitons in the fields
in the one-dimensional setting are, e.g., [6,10,11,25,26,34].

Depending on particular underlying assumptions and specific limits, gap solitons have been stud-
ied analytically through several different approaches. The first theoretical approach is through the
coupled-mode theory, which is based on a decomposition of the wave field into a forward and back-
ward propagating wave [37,6,8]. The applicability and justification of the method can be seen in
[12,29,30]. The stability of gap solitons in this approach has been studied analytically in [24,7,4].
The second formal approximation to gap soliton is through the so-called tight-binding approximation,
which leads to a discrete nonlinear Schrödinger equation (DNLS) [18]. In this approach, a gap soliton
can be related to the ‘ordinary’ soliton through the so-called staggering transformation. The exis-
tence and the stability of discrete solitons in the uncoupled limit of this approach has been discussed
in [28]. The third analysis of gap solitons is based on the approximation when the eigenfrequency of
the localized modes is close to one of the edges of the finite band gaps [13,14,31,38]. In this case, the
envelope of the gap solitons is described by the nonlinear Schrödinger equation. It is shown in [31]
that gap solitons at least suffer from an oscillatory instability because they possess internal modes.
Another common approach to study gap solitons is through variational methods [23]. The methods are
based on the substitution of an ‘educated guess’ into the Lagrangian of the equation, and seeking crit-
ical points in the finite-dimensional subspace. Even though the approach may predict the existence
as well as the stability of gap solitons well [35], a rigorous justification is rather an open question
(see [17]).

Relatively recently, another analytical method was proposed by Kominis et al. [20–22], employing
a phase-space method for the construction of an analytical solitary wave. Even though the method
is rather limited to piecewise-constant coefficients, it was shown that the method is effective in ob-
taining various types of localized modes belonging to gap solitons. For that new method, the stability
result was so far only obtained through numerical simulations.

The phase-space method proposed in [20–22] is similar to that used in our recent work [27],
where it was shown that the profile of a solution in the phase-space can be used to describe its in-
stability. The method was based on the topological argument developed in [15]. Here, we propose to
apply a similar method to determine the stability of gap solitons obtained through the phase-space
method [20–22]. Despite the similarity in the proposed method in investigating the instability of gap
solitons, the problem is nontrivial. The topological argument in [15] is so far immediately applicable
to nonlinear systems with finite inhomogeneity (see [27] and references therein). By specifically con-
structing the solutions, we show that the argument is also useful to study gap solitons. In addition
to inhomogeneities occupying the infinite domain, the so-called surface gap solitons sitting at the
interface between inhomogeneities in the semi-infinite domain and a homogeneous region [34,36,22]
will also be studied. Our result will complement the numerical results on the stability of surface gap
solitons recently studied, e.g., in [9,5].

The paper is outlined as the following. In Section 2, the governing equations are discussed and the
corresponding linear eigenvalue problem is derived. The construction of gap solitons using the phase-
space method is briefly explained. The instability of gap solitons is studied analytically in Section 3
using the topological argument. In Section 4, the linear eigenvalue problem for several gap solitons
is solved numerically, where an agreement between the analytical results presented in the previous
section is obtained. In the same section, the instability of surface gap solitons is also discussed. We
conclude the paper in Section 5.

2. Mathematical model

We consider the following governing system of differential equations

iΨt + Ψxx + |Ψ |2Ψ = V Ψ, x ∈ U O := R \ U I ,

iΨt + Ψxx − η|Ψ |2Ψ = 0, x ∈ U I (1)
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where the ‘outer’ equation has focusing type nonlinearity, the ‘inner’ equation can be defocusing
(η > 0) or linear (η = 0), and U O , U I are disjoint sets of intervals to be specified later. The spatially
periodic inhomogeneity in the nonlinear term is also referred to as nonlinear lattice (see [16] for a
recent review on solitons in such lattices).

To study standing waves of (1), we pass to a rotating frame and consider solutions of the form
Ψ (x, t) = e−iωtψ(x, t). We then have

iψt + ψxx + |ψ |2ψ = (V − ω)ψ, x ∈ U O ,

iψt + ψxx − η|ψ |2ψ = −ωψ, x ∈ U I . (2)

Standing wave solutions of (1) will be steady-state solutions to (2). We consider real, t independent
solutions u(x) to the ODE:

uxx = (V − ω)u − u3, x ∈ U O ,

uxx = −ωu + ηu3, x ∈ U I . (3)

To obtain solutions that decay to 0 as x → ±∞, the condition that V −ω > 0 is required, with ω ∈R+ .
We will also require that ux → 0 as x → ±∞. To establish the instability of a standing wave solution
we linearize (2) about a solution to (3). Writing ψ = u(x) + ε((r(x) + is(x))eλt + (r(x)� + is(x)�)eλ�t)

and retaining terms linear in ε leads to the eigenvalue problem

λ

(
r
s

)
=

(
0 D−

−D+ 0

)(
r
s

)
= M

(
r
s

)
, (4)

where the linear operators D+ and D− are defined as

D+ =
∂2

∂x2 − (V − ω) + 3u2, x ∈ U O ,

∂2

∂x2 + ω − 3ηu2, x ∈ U I ,
(5)

D− =
∂2

∂x2 − (V − ω) + u2, x ∈ U O ,

∂2

∂x2 + ω − ηu2, x ∈ U I .
(6)

It is then clear that the presence of an eigenvalue of M with positive real part implies instability.
In [20] a gap soliton was constructed via a method of superimposing the phase portraits of the

‘outer’ system:

ux = y, yx = (V − ω)u − u3, (7)

and the ‘inner’ one:

ux = y, yx = −ωu + ηu3. (8)

We can view the composite picture as a single, non-autonomous system with phase plane given by

ux = y,

yx =
{

(V − ω)u − u3, x ∈ U O ,

−ωu + ηu3, x ∈ U .
(9)
I
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Fig. 1. The plot of a gap soliton of (3) in (a) the physical space, (b) the phase-space. The parameter values are explained in
Section 4.

In the phase plane of (7), the outer system admits a soliton solution, given by the equation:

y2 = (V − ω)u2 − u4

2
, (10)

while solution curves of the inner system are given by

y2 = −ωu2 + ηu4

2
+ C . (11)

The inner system (8) admits a heteroclinic orbit in the phase plane given by C = ω2/2. The solutions
we are interested in will travel in the phase plane along the homoclinic orbit of the outer system
described by (10) and then ‘flip’ to the inner system as x passes through U I , and then ‘flip’ back to
the outer system along the homoclinic orbit, repeating the process for each of the components of U I
(see [20]).

Let U S be the collection of intervals U S = [0, x0)∪ (x1, x2)∪ (x3, x4) . . . . In the case of a gap soliton,
U I = −U S ∪ U S , and we have that the number of components of U I is infinite and the xi ’s are chosen
so that the soliton travels from (u0, y0) along the inner system to (−u0,−y0). This is a key ingredient
in the construction of the soliton, and will play a large role in establishing instability. In [20], the inner
system is linear, and the length of the interval (x2k, x2k−1) can be determined as π/

√
ω. Here, we do

not require that the inner system be linear, however we do require that the xi ’s be chosen so that if
i � 1, the soliton travels from (u0, y0) on the homoclinic orbit along the inner system to (−u0,−y0),
which is also on the homoclinic orbit.

In Fig. 1, we plot an example of a gap soliton of the governing equation (1) for parameter values
that will be explained in Section 4. One can notice the main characteristic of gap solitons in the plot,
which is the infinitely many zeros in the soliton profile.

3. Instability results

To show instability of the standing waves, we will show that the matrix M from above has a real
positive eigenvalue. This is done by applying the main theorem of [15]. In [27], systems like (1) were
considered with U I = (−L, L), for some real number L. One can show that the following quantities
are well defined (see for example [15], and the references therein):

P = the number of positive eigenvalues of D+,

Q = the number of positive eigenvalues of D−.
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We then have the following:

Theorem 1. (See [15].) If P − Q �= 0,1, there is a real positive eigenvalue of the operator M.

From Sturm–Liouville theory, P and Q can be determined by considering solutions of D+v = 0
and D−v = 0, respectively. In fact, they are the number of zeros of the associated solution v . Notice
that D−v = 0 is actually satisfied by the standing wave itself, and that D+v = 0 is the equation of
variations of the standing wave equation. It follows that:

Q = the number of zeros of the standing wave u,

P = the number of zeros of a solution to the variational equation along u. (12)

For gap solitons, it is not immediately clear how to apply Theorem 1 above as in this case, both,
P and Q → ∞. The idea presented in this paper is to build an approximation to a gap soliton using
more and more intervals of U I for which the quantity P − Q remains constant. To this end define
S0 = [0, x0) and Sn = [0, x0)∪ (x1, x2)∪ (x3, x4)∪· · ·∪ (x4n−1, x4n ), where (xi, xi+1) ⊆ U S . Thus Sn adds
two more components for each n. Then we can define Un = −Sn ∪ Sn , and we let fn be a solution to
the ODE

fxx = (V − ω) f − f 3, x ∈R \ Un,

fxx = −ω f + η f 3, x ∈ Un. (13)

Thus for example f0 would be the solution to

fxx = (V − ω) f − f 3, |x| � x0,

fxx = −ω f + η f 3, |x| < x0, (14)

while f1 would be a solution to

fxx = (V − ω) f − f 3, x /∈ (−x4,−x3) ∪ (−x2,−x1) ∪ (−x0, x0) ∪ (x1, x2) ∪ (x3, x4),

fxx = −ω f + η f 3, x ∈ (−x4,−x3) ∪ (−x2,−x1) ∪ (−x0, x0) ∪ (x1, x2) ∪ (x3, x4). (15)

A gap soliton then can be realized as the limit of successive fn ’s (in a variety of norms, but in
particular in the L2 and H1 norms). In Fig. 2 we present a plot of fn , n = 0,1,2, approximating the
gap soliton in Fig. 1.

We have the following theorem:

Theorem 2. The quantity P − Q is the same for all f i described above. Thus if f0 is unstable then so is fn for
all n. Further, if f0 is unstable, then so is f , the gap soliton, corresponding to the limit.

The key idea is to use the interpretation of P and Q given in (12) as the number of zeros of the
solution f and the number of zeros of the solution to the variational equation along f , for the partial
solution defined on (xi, xi+4), to the ODE below:

fxx = (V − ω) f − f 3, x ∈ (xi+1, xi+2) ∪ (xi+3, xi+4),

fxx = −ω f + η f 3, x ∈ (xi, xi+1) ∪ (xi+2, xi+3). (16)
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Fig. 2. Successive approximations to a gap soliton in Fig. 1 in the physical space (a, c, e) and in the phase-space (b, d, f). The
first, second and third row is respectively f0, f1, and f2.

The number Q is straightforward to calculate. We make the geometric observation as in [27]
that P , the number of zeros of a solution to the equation of variations along f , can be found by
determining the number of times that a vector must pass through the vertical as the base point
ranges over the entire orbit. It turns out that for the solution of (16) defined above, the rotation of
a vector by the equation of variations is the same (mod 2π ) as if the base point had traveled along
only the outer homoclinic orbit.
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Fig. 3. A sketch of a phase portrait of the partial solution to Eq. (16). The points ai correspond to the points ( f (xi−1), fx(xi−1))

in the phase plane.

Example 1. To better illustrate this last point, we first consider the case when both the inner system
and the outer systems are linear. That is, we have the following systems of linear, constant coefficient
equations

(
u
y

)
x
=

(
0 1

(V − ω) 0

)(
u
y

)
, when x ∈ (xi+1, xi+2) ∪ (xi+3, xi+4) (17)

=
(

0 1
−ω 0

)(
u
y

)
, when x ∈ (xi, xi+1) ∪ (xi+2, xi+3). (18)

The solution to the above equation can be written explicitly. Further, because we are in the linear case,
we have that the equation of variations along a solution is the same as the equation itself (17)–(18).

Being led by the geometry of the phase plane, we let Φ1(a,b) denote a fundamental solution
matrix to the equation of variations of the outer system of Eq. (17) along a solution to (17) which
travels from point a to point b in the phase plane. That is, let (u(x), y(x)) be a solution to (17),
considered on the interval (x j, xk). Then set a := (u(x j), y(x j)) and b := (u(xk), y(xk)), and define
Φ1(a,b) to be a fundamental solution matrix of the equation of variations to the outer system, along
the path (u(x), y(x)) with x ∈ (x j, xk).

Similarly, let Φ2(a,b) be a fundamental solution matrix to the equation of variations of the inner
system (18), along a solution to (18) evolving from point a to point b. We denote by a0, a1, a2, a3, the
points in the phase plane of (17)–(18) where the solutions switches between the two systems, and
a4 the point where we stop evolving (see Fig. 3), and we let

( ζ0
ξ0

)
be a pair of initial conditions in the

tangent plane to R
2 at the point a0. We have that a solution to the equation of variations along the

orbit from a0 to a1 to a2 to a3 to a4 can be described as

Φ1(a3,a4)Φ2(a2,a3)Φ1(a1,a2)Φ2(a0,a1)

(
ζ0
ξ0

)
.

It turns out that modulo 2π ,

Φ1(a3,a4)Φ2(a2,a3)Φ1(a1,a2)Φ2(a0,a1)

(
ζ0
ξ0

)
= Φ1(a0,a4)

(
ζ0
ξ0

)
. (19)

The equality in Eq. (19) can be verified by solving the appropriate systems. Another way to see the
effect is to consider the following. As the base point evolves under Eqs. (17)–(18) from ai to ai+1,
we can consider the aggregate effect of a Φ j(ai,ai+1) on a tangent vector

( ζ0
ξ0

)
, as a linear map from

R
2 → R

2, by simply determining where a tangent vector to ai gets sent to, when the base point is
at ai+1. That is, we are considering Φ j(ai,ai+1) as a map between the tangent plane of R

2 at the
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point ai to the tangent plane of R2 at the point ai+1. This will give us the total rotation of a tangent
vector modulo 2π as we travel from point ai to point ai+1 along the orbit. The key observation is
to realize that for Φ2(a0,a1) and Φ2(a2,a3), this will be negative the identity −Id. That is, viewing
Φ2(a j,a j+1), j = 0,2 as a map between tangent spaces of R2, Φ2(a j,a j+1) : Ta jR → Ta j+1R, j = 0,2,
we have Φ2(a j,a j+1) = −Id. Moreover, by considering Φ2(a j,a j+1) in this way, we are just measuring
the effect of rotation by Φ2(a j,a j+1) on an initial tangent vector modulo 2π , and we have that

Φ1(a3,a4)Φ2(a2,a3)Φ1(a1,a2)Φ2(a0,a1)

(
ζ0
ξ0

)
= (−Id)2Φ1(a3,a4)Φ1(a1,a2)

(
ζ0
ξ0

)

= Φ1(a0,a4)

(
ζ0
ξ0

)
, (20)

where the last equality follows from the facts that a0 = −a1, a2 = −a3, the outer system of Eq. (17)
is symmetric about the origin, and the group property of variational flows.

We are now ready to state the main lemma used in the proof of Theorem 2.

Lemma 1. Redefine Φ1(a,b) and Φ2(a,b) as in the above example, but instead of using the linear ODE, let
them be the fundamental solution matrices to the equations of variations along solutions to the inner and
outer systems given in the nonlinear equation (16):

fxx = (V − ω) f − f 3, x ∈ (xi+1, xi+2) ∪ (xi+3, xi+4),

fxx = −ω f + η f 3, x ∈ (xi, xi+1) ∪ (xi+2, xi+3).

Likewise, let a j be defined analogously for the points in the phase plane of the nonlinear equation where the

orbit switches between the inner and outer systems. Also, let
( ζ0

ξ0

)
be an initial condition to the equation of

variations along a solution to (16) in the tangent plane to R
2 at a0 . Then we have the following:

Φ1(a3,a4)Φ2(a2,a3)Φ1(a1,a2)Φ2(a0,a1)

(
ζ0
ξ0

)
= Φ1(a0,a4)

(
ζ0
ξ0

)
. (21)

Proof. The exact same reasoning can be used to prove Lemma 1 (the nonlinear case), as was used in
the example (the linear case). The only difference is that in order to determine the aggregate effect
of the inner system on an initial tangent vector some more care must be taken with the matrices
Φ2(ai,ai+1). Write the equation of variations to the outer system as

(
ζ

ξ

)
=

(
0 1

−3u2
1 + V − ω 0

)(
ζ

ξ

)
, when x ∈ (xi+1, xi+2) ∪ (xi+3, xi+4), (22)

where u1(x) is the equation satisfying the outer system with limx→±∞ u1(x) = limx→±∞ u′
1(x) = 0.

Write the equation of variations of the inner system as

(
ζ

ξ

)
=

(
0 1

3ηu2
2 − ω 0

)(
ζ

ξ

)
, when x ∈ (xi, xi+1) ∪ (xi+2, xi+3), (23)

where u2
2 satisfies the appropriate conditions for the orbit. Now here is where the appropriate choices

of the xi ’s must come into play. In the linear case, the xi ’s were chosen so that the length of an
interval in U I was π√

ω
. Here we choose the xi ’s in U I so that the length of an interval is such that

we will return not only to the homoclinic orbit, but also if we leave the homoclinic orbit at the point
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(u0, y0), we will return to the homoclinic orbit at the point (−u0,−y0). This allows us to determine
the effect of the rotation (modulo 2π ) by the flow associated to the equation of variations along the
partial orbit (u2(x), y2(x)). In fact, we claim that the exact same is true as in the linear case. If B is
the linear map from the tangent space at a0 and at a2 to the tangent spaces at a1, a3 respectively,
then B = −Id. To see this we will write out B in a suitable basis �v1, �v2 of the tangent space at a0.
One obvious choice of a basis vector is the tangent vector to the inner system. However given Eq. (23),
and the fact that along an orbit (u0, y0) → (−u0,−y0), this means that if �v1 is the vector tangent to
the inner orbit at a0 (or a2), then under B �v1 → −�v1. This means that B has the form:

B =
(−1 b1,2

0 b2,2

)
, (24)

where bi, j are the coefficients of the linear combination of �v1 and a suitably chosen �v2. Now we
appeal to two facts about the matrix B which are evident from its definition. The first is that B must
be orientation preserving. This is an elementary consequence due of the fact that it is the matrix of
a flow (see for example [32]). This means that b2,2 must be negative. The second fact is that since
B corresponds to the matrix of the equation of variations traveling half way along the periodic orbit
given by (u2(x), y2(x)) (because we chose our xi ’s so it would be that way), we must have that
B2 = Id. But this means that b1,2 = 0 and b2,2 = −1 and the matrix B itself B = −Id. Now we simply
repeat the computation done in Eq. (20) and the proof of Lemma 1 is complete. �

We are now ready to complete the proof of Theorem 2.

Proof of Theorem 2. Recall that fn as constructed is the solution to the ODE (13). We let Pn and Q n

denote the count for fn of P and Q respectively. Lemma 1 shows that Pn−1 = Pn + 2 and it is clear
that Q n−1 = Q n , and so the quantity Pn − Q n is the same for all fn , and in particular is equal to
P − Q for f0. This completes the first part of the proof of Theorem 2.

In order to determine the instability of the limit soliton we must proceed topologically using the
methods developed in the proof of the main theorem of [15].

We have already discussed that in H1, fn → f is a solution to

fxx = (V − ω) f − f 3, x ∈R \ U I ,

fxx = −ω f + η f 3, x ∈ U I . (25)

Following [15] we can associate to each solution fn a curve γn(x), and to f a curve γ (x) in Λ(2)

the space of Lagrangian planes in R
4.

This is done as follows. Let Φn
L+ (x) denote the evolution operator of the ODE corresponding to

the equation of variations of the ODE (13) along the solution fn . Likewise, let ΦL+ (x) denote the
evolution operator of the ODE corresponding to the equation of variation of the ODE (25) along the
solution f = limn→∞ fn . Thus if

( v0
w0

)
is a pair of initial conditions at x = 0, then for any x ∈ R we

have that the evolution of
( v0

w0

)
under the equation of variations along f , fn respectively will be

given by
( ΦL+ (x)·v0

ΦL+ (x)·w0

)
, respectively

( Φn
L+ (x)·v0

Φn
L+ (x)·w0

)
.

We remark that the initial conditions
( v0

w0

)
will be the same for each fn as well as for f .

Again appealing to [15], we can explicitly write the curves γn(x) and γ (x) in the space of La-
grangian planes Λ(2) ≈ U (2)/O (n). This is given by

γn(x) =
(

eiθ1,n(x) 0
0 eiθ2,n(x)

)
, (26)
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where

θ1,n = 2 arctan

(
Φn

L+(x) · w0

Φn
L+(x) · v0

)
and θ2,n = −2 arctan

(
f ′
n(x)

fn(x)

)
, (27)

and

γ (x) =
(

eiθ1(x) 0
0 eiθ2(x)

)
, (28)

where

θ1 = 2 arctan

(
ΦL+(x) · w0

ΦL+(x) · v0

)
and θ2 = −2 arctan

(
f ′(x)

f (x)

)
. (29)

Now we observe that the curves γn(x) and γ (x) actually lie on a torus contained in Λ(2).
It was established in [15] that because fn and f are solutions corresponding to homoclinic orbits

in the phase plane of Eqs. (13), and (25), the curves γn(x), and γ (x) have well-defined end-points. Let
μ−,n , μ+,n be the end-points in Λ(2) of γn(x). That is, let

lim
x→−∞γn(x) = μ−,n and lim

x→∞γn(x) = μ+,n,

and set

lim
x→−∞γ (x) = μ− and lim

x→∞γ (x) = μ+.

Further because fn → f and Lemma 1, we have that μ−,n = μ− , and μ+,n = μ+ for all n. In the
previously introduced coordinates on the torus in Λ(2) this means that the limits of θ1,n , θ2,n are
equal to the limits of θ1(x) and θ2(x) as x → ±∞. Moreover, it is easy to calculate explicitly that

θ1(x) → 2 arctan(
√

V − ω) := θ− and θ2(x) → −θ−

as x → −∞.
Still following the outline laid out in [15], we denote by ˜ the lift of the point (or curve) in the

torus embedded in Λ(2) to its corresponding point in the universal cover of the torus, R2. We will
parametrize the universal covering of the torus in the obvious way. Without loss of generality, all of
the μ−,n ’s and μ− can be lifted to the same point μ̃− = (θ−,−θ−). It was shown in [15] that for
each n, μ+,n lifts to the point μ̃+,n = (±θ−, θ− + (P − Q )2π). Thus Lemma 1 implies that each μ+,n

lifts to the same point μ̃+,0 = (±θ−, θ− + 2πk).
Next we observe that as fn → f pointwise, γn(x) → γ (x) in the torus inside Λ(2) pointwise, and

the compactness of the torus and of Λ(2), means that the end-point μ+ must lift to the same point
in the cover as μ+,0. Thus we have that μ̃+ = (±θ−, θ− + 2πk).

Finally, it was shown in [15], that if |k| �= 0,1, then the corresponding soliton underlying the curve
γ is unstable. This completes the proof of Theorem 2. �
Remark 1. The proof of Theorem 2 may also be couched in the language of fixed end-point homotopy
classes. There are several ways to define such classes, see for example [33] or [1], and the references
therein. In this context Theorem 2 establishes that the fixed end-point homotopy class of the curve
γ is the same as those for γn(x). An immediate consequence of this observation is that in Λ(2), it is
possible to deform the curves γ , and γn all to the curve γ0, in a continuous way.
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Fig. 4. The positive eigenvalues of the operator D+ , i.e. λ+ . One symbol corresponds to two different, but very close eigenvalues.

Remark 2. One can also consider so-called surface gap solitons, and obtain exactly the same results as
for Theorem 2. Mathematically, a surface gap soliton is the evolution of the solution to Eq. (25) but
with the chosen intervals U I replaced by U S , defined earlier. In this case, we consider a sequence of
functions fn which are solutions to Eq. (13), but with Un replaced by Sn . Then the functions fn → f ,
a solution to (25) with the appropriate replacements. Lemma 1 holds, as well as Theorem 2, and the
techniques used in each will be identical. Thus if we start with an unstable solution, then the surface
gap soliton that we obtain in the limit will also be unstable. (See below for a further discussion of
surface gap solitons).

4. Numerical solutions and discussion

We have solved the time independent equation (3) numerically, where we have used a spectral
difference method to approximate the Laplacian uxx . Once a solution is obtained, the corresponding
eigenvalue problem (4) is solved using a MATLAB routine. The time dependent equation (1) is inte-
grated numerically using a fourth-order Runge–Kutta method. Throughout the paper, we consider the
parameter values

V = 1, ω = 0.5.

First, we study Eq. (1) with

η =
{

1, x ∈ (−x0, x0),

0, x ∈ (x2n+1, x2n+2), (−x2n+2,−x2n+1),
(30)

where x0 = 2, x2n+1 − x2n = 1, x2n+2 − x2n+1 = π/
√

ω and n = 0,1,2, . . . . A gap soliton for the above
periodic inhomogeneity is depicted in Fig. 1.

Theorem 2 implies that to determine the instability of the gap soliton, it suffices to determine
the instability of the corresponding solution f0 shown in panel (a, b) of Fig. 2. As discussed in [27],
the positive solution f0 is unstable, with P = 2 and Q = 0. We plot λ+ , i.e. the eigenvalues of the
operator D+ , in Fig. 4. As shown in the figure, for f0 there are two positive eigenvalues of D+ , i.e.
P = 2. The matrix M in (4) for the solution has one pair of real eigenvalues [27] in agreement with
Theorem 1.

According to Lemma 1, fn must have the same value of P − Q as f0. In the same figure, we obtain
that f1 and f2 respectively have P = 6 and P = 10. Considering the fact from Fig. 2 that f1 and f2
respectively have Q = 4 and Q = 8, we indeed obtain that P − Q = 2 for both f1 and f2. Using the
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Fig. 5. The eigenvalue structure in the complex plane (a) and the typical time evolution (b) of the gap soliton in Fig. 1. Shown
in (b) is the top view of |ψ(x, t)| in the (t, x)-plane.

lemma, one will obtain that P − Q = 2 for limn→∞ fn . Using Theorem 2, one can conclude that the
gap soliton in Fig. 1 will be unstable. We depict in Fig. 5(a) the eigenvalue structure of the gap soliton
in the complex plane. When the corresponding f0 of the gap soliton has one pair of real eigenvalues
[27], the gap soliton has several pairs of unstable eigenvalues. Nonetheless, one can easily notice that
there is only one pair of real eigenvalues, similarly to f0 [27]. The time dynamics of the solution is
shown in panel (b) of the same figure, where a typical instability is in the form of the dissociation of
the solution.

Next, we study Eq. (1) with

η =
{

1, x ∈ (−x0, x0),

0, x ∈ (x2n+1, x2n+2),
(31)

for the same values of xn , n = 0,1,2, . . . , as above. The only difference with η defined in Eq. (30) is
that the present periodic inhomogeneity only occupies the x > 0-region. In this case, we will have sur-
face gap solitons sitting at the interface between a homogeneous and a periodically inhomogeneous
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Fig. 6. (a) A corresponding surface gap soliton of that in Fig. 1. (b) An f1 approximation of (a).

Fig. 7. (a) The positive eigenvalues of D+ for the approximations f1 and f2. Note that different from the plot in Fig. 4, here
each symbol corresponds to one eigenvalue. (b) The eigenvalue structure of the surface gap soliton in Fig. 6(a).
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Fig. 8. A time dynamics of the surface gap soliton in Fig. 6. Shown is the top view of |ψ(x, t)| in the (t, x)-plane.

region. A corresponding surface gap soliton of that in Fig. 1 and one of its successive approximations
f1 are shown in Fig. 6. The f0 approximation of the soliton is nothing else but that shown in Fig. 2(a).

Using Theorem 2 and Remark 2, one can expect that in this case P − Q = 2. Plotted in Fig. 7(a) is
the positive eigenvalues of D+ , i.e. λ+ . The positive eigenvalue λ+ of f0 is the same as before, which
is P = 2. For f1 and f2, from Fig. 7(a) one can deduce that P = 4 and P = 6, respectively, with Q = 2
and Q = 4. Hence, the limiting quantity P − Q of the surface gap soliton is the same as that of the
gap soliton in Fig. 1, i.e. P − Q = 2. As expected, shown in Fig. 7(b) is the eigenvalue structure of
the gap soliton, where one also obtains one pair of real eigenvalues similarly to the stability the gap
soliton depicted in Fig. 5(a). We plot the time dynamics of the surface gap soliton in Fig. 8.

5. Conclusion

We have considered a nonlinear Schrödinger equation with periodic inhomogeneity, both in the
infinite and semi-infinite domain. Specifically we have studied the instability of gap solitons admitted
by the system. We have established a proof that if the periodic inhomogeneity is arranged in a par-
ticular way, such that parts of the solutions belonging to closed trajectories in the phase-space have
length half the period of the trajectories, then the solitons inherits the instability of the corresponding
solution with finite inhomogeneity. The analytical study is based on the application of a topological
argument developed in [15].

It is natural to extend the study to the case when the solutions are localized, but do not tend to
the uniform zero solution (see, e.g., [21]). The (in)stability of such solitons is proposed to be studied
in the future using analytical methods similar to that presented herein.
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